Python中特征降维的示例分析

这篇文章主要介绍了Python中特征降维的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。

专注于为中小企业提供成都网站设计、成都做网站服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业噶尔免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了上1000家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。

说明

1、PCA是最经典、最实用的降维技术,尤其在辅助图形识别中表现突出。

2、用来减少数据集的维度,同时保持数据集中对方差贡献最大的特征。

保持低阶主成分,而忽略高阶成分,低阶成分往往能保留数据的最重要部分。

实例

from sklearn.feature_selection import VarianceThreshold
 
# 特征选择  VarianceThreshold删除低方差的特征(删除差别不大的特征)
var = VarianceThreshold(threshold=1.0)   # 将方差小于等于1.0的特征删除。 默认threshold=0.0
data = var.fit_transform([[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3]])
 
print(data)
'''
[[0]
 [4]
 [1]]
'''

感谢你能够认真阅读完这篇文章,希望小编分享的“Python中特征降维的示例分析”这篇文章对大家有帮助,同时也希望大家多多支持创新互联,关注创新互联行业资讯频道,更多相关知识等着你来学习!


本文标题:Python中特征降维的示例分析
网页网址:http://csruizhi.cn/article/jehgph.html

其他资讯

Copyright © 2007-2024 成都优众联杰科技有限公司 All Rights Reserved 蜀ICP备2024116266号
友情链接: 成都营销网站建设 做网站设计 定制网站设计 成都商城网站建设 成都网站建设 品牌网站建设 成都企业网站建设公司 成都h5网站建设 企业网站设计 自适应网站建设 重庆外贸网站建设 成都网站建设 自适应网站设计 成都网站设计 定制网站建设 重庆手机网站建设 网站建设公司 成都网站建设 响应式网站建设 网站建设 营销型网站建设 企业网站设计